Atrial Fibrillation (AFib), the most common cardiac arrhythmia, causes serious tissue damage to the heart and increases the risk of stroke and heart failure. Existing ablation techniques only prove successful approximately 50 percent of the time because it is difficult to distinguish between diseased and healthy heart tissue.

A novel device improves ablation success by combining imaging, electrical mapping, and navigation. The device differentiates between healthy and diseased tissue with microstructural detail. The catheter and accompanying software also enables electrical mapping of the tissues functionality. This allows clinicians to visualize information of tissue microstructure with functional data, providing an individualized atlas of regional structure and function that guides diagnosis and treatment. The device is deployed using a steerable sheath and integrates with existing