Implantable medical devices, such as pacemakers and cochlear implants, require wireless communication capabilities. These wireless data transmission systems rely on integrated miniature antennas to transmit patient data and monitor device health. Performance of traditional antennas is limited by size constraints, incompatibility with the body, and muffled signals.

The nanocomposite-based implantable antenna combines high conductivity and low stiffness, and allows wireless implantable medical devices to communicate externally without biocompatibility or stability issues. An additional external tattoo or textile antenna could also be placed on the fat layer of the skin to allow deeper placement of implantable devices in the body, while reducing radiative absorption and transmission loss. Using the combined system of implantable and external antennas improves overall implant communication.